Simulated Annealing for Convex Optimization
نویسندگان
چکیده
We apply the method known as simulated annealing to the following problem in convex optimization: minimize a linear function over an arbitrary convex set, where the convex set is specified only by a membership oracle. Using distributions from the Boltzmann-Gibbs family leads to an algorithm that needs only O∗( √ n) phases for instances in R. This gives an optimization algorithm that makes O∗(n4.5) calls to the membership oracle, in the worst case, compared to the previous best guarantee of O∗(n5). The benefits of using annealing here are surprising due to the fact that such problems have no local minima that are not also global minima. Hence, we conclude that one of the advantages of simulated annealing, in addition to avoiding poor local minima, is that in these problems it converges faster to the minima that it finds. We also give a proof that under certain general conditions, the Boltzmann-Gibbs distributions are optimal for annealing on these convex problems.
منابع مشابه
Faster Convex Optimization: Simulated Annealing with an Efficient Universal Barrier
Interior point methods and random walk approaches have been long considered disparate approaches for convex optimization. We show how simulated annealing, one of the most common random walk algorithms, is equivalent, in a certain sense, to the central path interior point algorithm applied to the entropic universal barrier function. Using this observation we improve the state of the art in polyn...
متن کاملComposite Stock Cutting through Simulated Annealing†
This paper explores the use of Simulated Annealing as an optimization technique for the problem Composite Material Stock Cutting. The shapes are not constrained to be convex polygons or even regular shapes. However, due to the composite nature of the material, the orientation of the shapes on the stock is restricted. For placements of various shapes, we show how to determine a cost function, an...
متن کاملEfficiency of quantum versus classical annealing in non-convex learning problems
Quantum annealers aim at solving non-convex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists in designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to ...
متن کاملInvestigating a hybrid simulated annealing and local search algorithm for constrained optimization
Constrained Optimization Problems (COP) often take place in many practical applications such as kinematics, chemical process optimization, power systems and so on. These problems are challenging in terms of identifying feasible solutions when constraints are non-linear and non-convex. Therefore, finding the location of the global optimum in the non-convex COP is more difficult as compared to no...
متن کاملGeneralized Simulated Annealing
We propose a new stochastic algorithm (generalized simulated annealing) for computationally finding the global minimum of a given (not necessarily convex) energy/cost function defined in a continuous D-dimensional space. This algorithm recovers, as particular cases, the so called classical (“Boltzmann machine”) and fast (“Cauchy machine”) simulated annealings, and can be quicker than both. Key-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Oper. Res.
دوره 31 شماره
صفحات -
تاریخ انتشار 2006